In vivo indices of oxidative stress in lead-exposed C57BL/6 mice are reduced by treatment with meso-2,3-dimercaptosuccinic acid or N-acetylcysteine.

نویسندگان

  • N Ercal
  • P Treeratphan
  • T C Hammond
  • R H Matthews
  • N H Grannemann
  • D R Spitz
چکیده

Knowledge of lead's capacity to disrupt the prooxidant/antioxidant balance within mammalian tissues suggests that definitive therapy for chronic lead poisoning should encompass both chelating and antioxidant actions. The dithiol meso-2,3-Dimercaptosuccinic Acid (DMSA) is the first orally administered metal chelating agent to receive U.S. Food and Drug Administration (FDA) approval for the treatment of childhood plumbism and possesses the potential to function as an antioxidant by removing lead from the site of deleterious oxidation reactions. Five weeks of lead exposure was found to deplete glutathione (GSH) levels, increase oxidized glutathione (GSSG), and promote malondialdehyde (MDA) production in both liver and brain samples taken from C57BL/6 mice. GSH levels increased and GSSG and MDA levels decreased in groups of lead-exposed mice that received 1 mmol/kg DMSA or 5.5 mmol/kg N-acetylcysteine (NAC) for 7 d prior to sacrifice. Treatment with DMSA caused a reduction in blood, liver, and brain lead levels consistent with its function as a chelating agent, while treatment with NAC did not reduce these lead levels. However, NAC did cause a reduction in indices of oxidative stress in both brain and liver samples, which implies that this synthetic thiol-containing antioxidant is capable of abrogating lead-induced oxidative stress in vivo. Overall, these results suggest that lead-induced oxidative stress in vivo can be mitigated by pharmacologic interventions, which encompass both chelating as well as thiol-mediated antioxidant functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antioxidant effects of N-acetylcysteine and succimer in red blood cells from lead-exposed rats.

This study examined whether lead-induced alterations in selected parameters that are indicative of oxidative stress accompany the toxic effects of lead in red blood cells (RBCs) in vivo. It also explored the possibility that treatment with N-acetylcysteine (NAC) or succimer (meso-2,3-dimercaptosuccinic acid) was capable of reversing parameters indicative of lead-induced oxidative stress. Fisher...

متن کامل

A role for oxidative stress in suppressing serum immunoglobulin levels in lead-exposed Fisher 344 rats.

Evidence implicating oxidative stress in toxicity during lead intoxication in vivo has opened new avenues for investigation of the mechanisms of lead-induced immunosuppression. The current study explores the possibility that lead-induced oxidative stress contributes to the immunosuppression observed during lead poisoning. Fisher 344 rats were exposed to 2,000 ppm lead acetate in their drinking ...

متن کامل

N-acetylcysteine and meso-2,3-dimercaptosuccinic acid alleviate oxidative stress and hepatic dysfunction induced by sodium arsenite in male rats

Environmental exposure to arsenic represents a serious challenge to humans and other animals. The aim of the present study was to test the protective effect of antioxidant N-acetylcysteine (NAC) either individually or in combination with a chelating agent, meso-2,3-dimercaptosuccinic acid (DMSA), against sodium arsenite oral toxicity in male rats. Five groups were used: control; arsenic group (...

متن کامل

The hepatoprotective and antioxidant effects of Curcumin and N-acetylcysteine in rats exposed to arsenic

Introduction: Arsenic is a highly toxic element that is widely distributed in environment. Antioxidants depletion and oxidative stress is now considered as one of the possible mechanisms of arsenic-induced toxicity. N-acetylcysteine (NAC) and Curcumin (Cur) are potential antioxidants that can compensate the depletion of antioxidants. This study aimed to compare the hepatoprotective effect of Cu...

متن کامل

Evaluation of Oxidative Stress in Combination Therapy with D-penicillamine and N-Acetylcysteine (NAC) in Lead Poisoning in Opium Addicts

Background: N-acetylcysteine (NAC) is a putative antioxidant and has gained attention as a promising agent for chelating heavy metals including lead. Considering the animal studies results, we hypothesized that adding NAC to the treatment regimen may improve the success of treatment with lead chelators. Methods: A total of 46 patients who were lead-poisoned opioid addicts were divided into two ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Free radical biology & medicine

دوره 21 2  شماره 

صفحات  -

تاریخ انتشار 1996